

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037011
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme							ks	
	Cl	holesterol Level	High	Low					
1	High		7.6	12.4	20	1	N/1 A	. 1	
1.	Low		30.4	49.6	80]	M1A	11	
			38	62	100				
								(2)	
	H ₀ : Cholesterol level is independent of intake of saturated fats(no association)								
	H ₁ : Cholesterol level is not independent of intake of saturated fats (association)								
		-	$\frac{(O-E)^2}{E}$		O^2				
	O	E	\overline{E}		$\frac{O^2}{E}$				
	12	7.6	2.547 or $\frac{242}{95}$	18.947	7 or $\frac{360}{19}$		dM1		
	8	12.4 1	.56129 or $\frac{242}{155}$	5.161	or \(\frac{160}{31}\)		A1		
	26	30.4	0.6368 or $\frac{121}{190}$	22.230	6 or $\frac{845}{38}$				
	54	49.6 (0.3903 or $\frac{121}{310}$	58.790	or $\frac{3645}{62}$				
	$\sum \frac{(O-1)^{-1}}{E}$	$\frac{(E)^2}{}$ =5.1358234.	0.3903 or $\frac{121}{310}$. or $\frac{1.2^2}{7.6} + \frac{8^2}{12.4}$	$+\frac{26^2}{30.4}+\frac{54}{49}$	$\frac{1}{6}$ -100 = 5.1	4 (awrt 5.14)	A1	(3)	
	$v = (2 - 1)^{-1}$	1)(2-1)=1	7.0 12.1	2011 17	.0		B1		
		= 3.841					B1	(2)	
	5.14 > 3.841 so sufficient evidence to reject H ₀ [Condone "accept H ₁ "]						M1	(-)	
								(2)	
	Association between cholesterol level and saturated fat intake							10	
	Notes								
	Minimum working use part marks: E_i (2), Hyp (1), 5.14 (3), 3.841 (2), Conclusion (2)								
	1^{st} M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by correct E_i								
	1 st A1	for all expected	l frequencies cor	rect. Allow	M1A0 for E	rounded to i	ntegers	}	
	1 st B1	• •	heses. Must mer nship" or "correl				nce		
	$2^{nd} dM1$		rrect terms (as in 3				ith their	E_{i}	
	Dependent on 1 st M1 Accept 2sf accuracy for the M mark 2 nd A1 for all correct terms. May be implied by a correct ans.(2 dp or better) Allow truncation eg 2.54 3 rd A1 for awrt 5.14								
	2 nd B1	for correct deg	rees of freedom	(may be imp	lied by a cv	of 3.841)			
	3 rd M1 for a correct statement linking their test statistic and their cv(cv could be 2.705 or > 3 Contradictory statements score M0 e.g. "significant, do not reject H ₀ " 4 th A1 for a correct comment in context - must mention "cholestorol" and "fats"							3.5)	
	condone "relationship" or "connection" here but not "correlation". e.g. "There is evidence of a relationship between cholesterol level and No follow through. If e.g hypotheses are the wrong way round A0 here								

Question Number				;	Scheme						Marks
2(a)	Uni	A	В	C	D	E	F	G			
	Staff-Stu	2	4	3	5	7	1	6			
	Satisfaction	3	2	6	4	5	1	7			M1A1A1
	$\frac{[d]}{d^2}$	-1	2	-3	1	2	0	-1			1,111,111
	d^2	1	4	9	1	4	0	1	20		
	$r_s = 1 - \frac{6 \times 20}{7(49 - 1)^{-3}}$	$\frac{0}{1)} = 0.6$	542857		(acce	ot $\frac{9}{14}$)		(;	awrt 0.0	643)	dM1A1
(b)	$H_0: \rho = 0$										(5)
	$H_{1:} \rho \neq 0 (\rho > 1)$	· 0)									B1
	Critical value						ed test)				B1
	0.643 <cv in<="" so="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cv>										
	There is insuff staff-student ra				ggest a	(positiv	ve) corr	elation	betwee	en	B1ft
	starr-student ra	atio and	i sausia	iction.							(3)
											Total 8
(a)	1St M1 for	on otto	met to		Notes	atırdantı	a matia	on sotio	faction	(at las	est A commont)
(a)	1 st M1 for an attempt to rank the staff-students ratio <u>or</u> satisfaction (at least 4 correct) 1 st A1 for correct rankings for both (one or both may be reversed)										
	2 nd A1 for $\sum d^2 = 20$ or correct d^2 row (NB $\sum d^2 = 92$ for one set of reversed ranks)										
	2^{nd} dM1 for use of the correct formula, follow through their $\sum d^2$ (Dependent on 1 st M1)										
	If answer is not correct, a correct expression is required. 3^{rd} A1 If $\sum d^2 = 20$ for awrt 0.643 or if $\sum d^2 = 92$ for awrt -0.643 (accept $\pm \frac{9}{14}$)										
(b)	1 st B1 for b	oth hyp	otheses	in term	is of ρ , o	one tail	H ₁ musi	t be con	npatible	with the	eir ranking
` ,	Нур						•		_		-
	Hypotheses just in words e.g. "no correlation" score B0 2^{nd} B1 for cv of 0.7857 or 0.7143 for one-tailed test (accept \pm)										
							H_1 wh				
	If hypotheses are the wrong way around this must be B0 but 3 rd B1 is possible. 3 rd B1ft for a correct contextualised comment. Must mention "ratio" or "no. of students per member of staff" and "satisfaction"										
	Fol	llow thr	ough t	heir r_s	and the	eir cv (p	rovideo	d it is c	v < 1		
	Do	n't insi	st on th	e word	l "positi		a one-				
	Use of "association" is B0 Independent of 1 st B1 so if $ r_s > cv $ must say there is sufficient evidence of(o.e.)										
											ir hypotheses
	Contradictory statements score B0										
	(This mark is just testing interpretation of comparison of their r_s and their cv)										

Question Number	Scheme					
3(a)i	Quota Sampling:					
	Advantages: Fieldwork can be done quick ly, <u>or</u> administering the test is easy ,					
e.g	or costs are kept to a minimum (cheap), or gives estimates for each course.					
	or OK for large populations or sampling frame not required (o.e.)					
e.g	Disadvantages: Non-random process <u>or</u> not possible to estimate the sampling errors, <u>or</u> non response not recorded, <u>or</u> interviewer can introduce bias in	B1				
c.g	sample choice. (o.e.)	D1				
3(a)ii	Stratified Sampling:					
- ()	Advantages: Can give accurate estimates as it is a random process, <u>or</u> gives					
e.g.	estimates for each course or representative of [BUT not "proportional" to]					
	the whole population. (o.e.)					
e.g.	Disadvantages: Sampling frame required, or strata may not be clear as some	B1				
c.g.	students overlap courses <u>or</u> not suitable for large populations. (o.e.)					
2(1)		(2)				
3 (b)	Total enrolments=1000 (may be implied by calculations)	B1				
	Leisure and Sport= $\frac{420}{1000} \times 100 = 42$	M1				
	1000					
	337					
	Information Technology= $\frac{337}{1000} \times 100 = 33.7 = 34$					
	Health and Social Care= $\frac{200}{1000} \times 100 = 20$					
	43					
	Media Studies= $\frac{43}{1000} \times 100 = 4.3 = 4$	A1				
	1000	(3)				
3 (c)	The college's information system would be used to identify each student					
- (-)	and which course they are enrolled on.	D1				
	i.e. idea of sampling frame or list for each course .	B1				
	Use of random numbers to select required number of students from each	B1				
	course					
		(2)				
	Notes	Total 7				
	Do not penalise for lack of context in part (a)	1				
(a)	1^{st} B1 for an advantage and a disadvantage for quota sampling (must be 1^{st} or 1^{st}	abelled (i))				
(4)	2^{nd} B1 for an advantage and a disadvantage for stratified sampling (2^{nd} or labe					
	Do not allow opposite pairs e.g. "quicker/easier" for quota sampling and "takes a lon					
	difficult" for stratified or quota "easy to use" but strat. "hard for large populations"					
	Do not allow same reason for both e.g. "gives estimates for each course"					
(b)	M1 for one correct calculation, ft their "1000"					
(D)	A1 for 42, 34, 20 and 4 only					
	101 ±2, 5±, 20 mid ± 0my					
()	1 st B1 for some mention of a suitable <u>sampling frame</u> . Need not give the speci	fic term but				
(c)	a suitable source of list is required for all students in each course.					
	2 nd B1 for mentioning use of <u>random numbers</u> or some random selection proce	ss <u>for each</u>				
	course. If they are describing systematic sampling score B0 here					

Question Number	Scheme							
4 (a)	$\overline{x} = \frac{8 \times 1.5 + 12 \times 4 + 13 \times 5.5 + 9 \times 7 + 8 \times 10}{50} = \frac{274.5}{50} = 5.49$ (*)							
	$\overline{x} = \frac{8 \times 1.5 + 12 \times 4 + 13 \times 5.5 + 9 \times 7 + 8 \times 10}{50} = \frac{274.5}{50} = 5.49 $ $s^{2} = \frac{8 \times 1.5^{2} + 12 \times 4^{2} + 13 \times 5.5^{2} + 9 \times 7^{2} + 8 \times 10^{2}}{49} - \frac{50}{49} 5.49^{2}, = 6.88 $ (*)							
(b)	$a = 50 \times P(6 < X < 8) = 50 \times P(0.194 < Z < 0.956)$ $a = 12.81 \text{ (tables) or } 12.68 \text{ (calc.)}$							
	b = 50 - (28.85 + a) = 8.34 (tables) or 8.47 (calc)							
(c)		l distrit	oution is a good fit	H _{1:} Normal distribution		B1		
	Class	0	E	$\frac{O^2}{E}$	$\frac{\left(O-E\right)^2}{E}$	M1		
	0-3	8	8.56	7.4766	0.0366	- 1/11		
	3-5	12	12.73	11.31186	0.0418	1		
	5-6	13	7.56	22.354497	3.9144	A1		
	6-8	9	12.68 or (12.81)	(6.32) ~ 6.38801	1.0680~ (1.13)]		
	8-12	8	(8.34) or 8.47	7.556080~ (7.67)	$(0.013) \sim 0.0260$			
	- 2							
	$\sum \frac{O^2}{E} - N = 5.087 \dots \sim 5.1400 \dots$ awrt (5.09 ~ 5.14)							
	v = 5 - 3 = 2 (for 5 – 3 or 2 can be implied by 5.991 seen)							
	$\chi_2^2(0.05) = 5.991$							
	5.09<5.991	l so ins	ufficient evidence t	o reject H ₀		M1		
	Normal distribution is a good fit.							
				Notes				
(a)	B1cso for denominator of 50 and at least 3 products on num or 274.5 on num							
	M1 for a correct expression with at least 3 correct products on num or $\frac{1844.25}{49} - \frac{1507.005}{49}$							
	$\underline{\text{or}} \frac{337.245}{49} \underline{\text{or}} \left(\frac{7377}{200} - 5.49^2\right) \times \frac{50}{49} \text{etc. Allow 3sf accuracy}$							
	A1cso for	6.88 w	ith M1 scored and a	no incorrect working s	een			
(b)	M1 a full method for a or b using the normal dist. Correct use of (6), 8, 5.49 and $\sqrt{6.88}$ seen 1^{st} A1 for a in range $12.68 \sim 12.81$ or b in range $8.34 \sim 8.47$ or awrt these values 2^{nd} A1ft for $50 - 28.85$ – their a (or b) (but requires M1). Allow awrt 3sf. Must add up to 50							
(c)	1 st B1 for both hypotheses. B0 if they include 5.49 or 6.88. Condone $X \sim N(\mu, \sigma^2)$ etc							
	1 st M1 for	attemp	ting $\frac{(O-E)^2}{E}$ or $\frac{C}{E}$	$\frac{O^2}{E}$, at least 3 correct e	xpressions or values			
				ord or 4 th column. (2 dp		e.g. 7.47)		
	. A	llow an	y value in the range	es for the last two rows	S.			
	2^{nd} M1 for	or a cor	rect statement base	5.09 ~ 5.14. Award Mon their test statistic ore M0 e.g. "significan	(>1) and their cv $(>$	tained. > 3.8)		
				ng that normal model is	· ·	helief is		
	correct. No	ft.Con	idone mention of 5.4	ng that normal model is 9 or 6.88 here. Hypothes	ses wrong way round s	cores A0		

Ques Nun		Scheme					
5	(a)	Let $L \sim N(50, 25)$ and $S \sim N(15, 9)$					
		Let $X = L - (S_1 + S_2 + S_3)$	B1				
		$E(X) = 50 - 3 \times 15 = 5$	B1				
		$Var(X) = 25 + 3 \times 9 = 52$	M1A1				
		$P(X < 0) = P\left(Z < \frac{-5}{\sqrt{52}}\right)$	dM1				
		= P(Z < -0.693)					
		=0.244 or 0.2451 (tables) (awrt $0.244 \sim 0.245$)	A1 (6)				
	(b)	Let $Y = L - 3S$	B1				
	(~)	$E(Y) = 50 - 3 \times 15 = 5$	B1				
		$Var(Y) = 25 + 3^2 \times 9 = 106$	M1A1				
		$P(Y > 0) = P\left(Z > \frac{-5}{\sqrt{106}}\right)$	dM1				
		=P(Z>-0.4856)					
		=0.686 or 0.6879 (tables) (awrt 0.686 ~ 0.688)	A1				
		=0.000 of 0.0077 (moles) (awit 0.000 × 0.000)	(6)				
			Total 12				
		Notes					
	(a)	1 st B1 for forming a suitable variable X explicitly seen. Do not give for L –	3S but				
	()	allow $L - (S + S + S)$ 2^{nd} B1 for $E(X) = 5$ (or -5 if their X is defined the other way around)					
		2^{nd} B1 for E(X) = 5 (or – 5 if their X is defined the other way around) 1^{st} M1 for an attempt at Var(X) = Var(L) + 3Var(S). Do not condone 5 for "25" or	3 for "9"				
		1^{st} A1 for 52	3 101				
		2 nd dM1 for attempting the correct probability and standardising with their m	ean and sd.				
		This mark is dependent on 1^{st} M1 so if X is not being used or wrong variance score M0					
		If their method is not crystal clear then they must be attempting $P(Z < -1)$	ve value)				
		or $P(Z > +ve \text{ value})$ i.e. their probability after standardisation should lead to	a prob < 0.5				
		2^{nd} A1 for awrt 0.244 ~ 0.245	a proc. voic				
		Correct ans. only scores 5/6 (or 6/6 if 1st B1) but must be clearly labelled as (a) or the	first answer.				
	(b)	1 st B1 for defining a new variable $[Y =] + (L - 3S)$. May be implied by a corr	rect variance.				
		2^{nd} B1 for E(Y) = 5 (or – 5 if their Y is defined as $Y = 3S - L$)	• • • • • • • • • • • • • • • • • • • •				
		1^{st} M1 for an attempt at $\text{Var}(Y) = \text{Var}(L) + 3^2 \text{Var}(S)$. Do not condone 5 for "25" of 1^{st} A1 for 106 only	r 3 for "9"				
		2^{nd} dM1 for attempting the correct probability and standardising with their m	ean and sd.				
		This mark is dependent on 1^{st} M1 so if Y is not being used or wrong varian	ce score M0				
		If their method is not crystal clear then they must be attempting $P(Z > -1)$					
			1 . 0.7				
		$P(Z < +ve \text{ value})$ i.e. their probability <u>after</u> standardisation should lead to 2^{nd} A1 for an awrt $0.686 \sim 0.688$	a proo. > 0.5				
		Correct answer only scores 6/6 but must be clearly labelled as (b) or the second	ond answer.				
		, and a second control of the contro					

Question Number	Scheme	Marks					
6 (a)	$\mathbf{H}_0: \mu_{new} - \mu_{old} = 1$	B1					
	$\mathbf{H}_{1}: \mu_{new} - \mu_{old} > 1$	B1					
	$z = \frac{7 - 5.5 - 1}{\sqrt{\frac{0.5}{60} + \frac{0.75}{70}}} = 3.62254$ (awrt 3.62)	M1 A1A1 A1					
	Critical value $z = 1.6449$ (allow \pm)	B1					
	$[3.62 > 1.6449]$ so sufficient evidence to reject H_0	dM1					
	Evidence that the mean yield of new variety is more than 1 kg greater than the old variety.	A1					
(b)	Mean yield is normally distributed Sample size is large. Must state or imply that in this case sample size is large						
	Notes	Total 11					
(a)	1 st & 2 nd B1 for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if there is some indica which is which e.g. $A \sim N(\mu_A, 0.5)$	tion of					
	1 st M1 for an attempt at se. Condone switching 0.5 and 0.75 $\sqrt{\frac{0.5 \text{ or } 0.75}{60} + \frac{0.75 \text{ or } 0.5}{70}}$						
	1^{st} A1 for a correct expression for denominator of test statistic or 0.138 or $\sqrt{0.0190}$ 2^{nd} A1 for a correct numerator of test statistic (must have the -1) 3^{rd} A1 for awrt 3.62						
	[Allow – 3.62 from numerator of 5.5 – 7 – 1 and compatible H ₁] 3 rd B1 for ± 1.6449 seen or probability of 0.0002 (tables) or 0.000145(calc) [allow 0.0001] 2 nd dM1 dep. on 1 st M1 for a correct statement based on their normal cv and their test statistic 2 nd A1 for correct comment in context. Must mention "yield" and "varieties" or "old"						
	and "new" and "1" If second B mark is B0 award A0 here						
ALT	Pooled estimate: If they calculate $s_p = \sqrt{0.41845} = 0.64688$ allow 1 st M1, 1 st A1 for expression (or awrt 0.114) and 2 nd A1 if numerator correct but A0 for test statistic (4.39)						
(b)	1 st B1 for mention of mean (yield) and normal (distribution) 2 nd B1 for mention of sample (size) being large in this case						

Ques Num	ber	Scheme	Marks
7	(a)	$\hat{\mu} = \frac{-}{x} = \frac{33.29}{8} = 4.16125$ (awrt 4.16)	B1
		$\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ $\hat{\sigma}^2 = s^2 = \frac{4.12^2 + 5.12^2 + \dots - 8 \times \bar{x}^2}{7}$ $\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078$ (awrt 0.411)	M1
		$\hat{\sigma}^2 = s^2 = \frac{141.4033 - 138.328013}{7} = 0.41078 $ (awrt 0.411)	A1
	(b)	$\sum x = 33.29 + 32 \times 4.55 = 178.89,$ (awrt 179)	B1 (3)
		$\sum x^2 = "141.4035" + 31 \times 0.25 + 32 \times 4.55^2 (= 811.6335) $ (awrt 812)	M1A1
		Combined sample: $s^2 = \frac{811.6335 - \frac{178.89^2}{40}}{39} = 0.29724865$ (awrt 0.297)	M1A1
		$\frac{s}{\sqrt{n}} = \frac{\sqrt{0.297}}{\sqrt{40}} = 0.0862$ (awrt 0.0862)	M1A1 (7)
	(c)	$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \frac{178.89}{40} \pm 1.96 \frac{0.67}{\sqrt{40}}$	M1B1
		= (4.2646, 4.67988) awrt (4.26 [or 4.265], 4.68)	A1 (3)
		Notes	Total 13
	(a)	M1 for an attempt at s^2 : correct denom, clear attempt at $\sum x^2$ and ft their \overline{x}	Ans only 2/2
	(b)	B1 for correct sum or mean or fully correct expression (accept mean = awrt 4.47) \mathbf{M} 1 st M1 for their 141.4035 + 31×0.25 + 32×4.55 ² or "141.4035" + 7.75+ 662.48 (ac Beware: $32(0.25 + 4.55^2)$ + "141.4035" = awrt 812 but scores M0A0. 1 st A1 for a fully correct expression (all to 3sf or better) or answer only = aw 2 nd M1 for a correct expression using their values	ecept 3sf)
		3^{rd} M1 dependent on using a changed s^2 (not their 0.411 or 0.25) for $\frac{\sqrt{0.2}}{\sqrt{4}}$	<u>97"</u> 0
		This s^2 must be based on a <u>combination</u> of their 0.411 and 0.25 e.g. 0	.661
	(c)	M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$ for any $z \ (> 1.5)$ and ft their \overline{x} based on combining their 4	
		do not award for simply using 4.55 or their 4.16. Condone $\sigma = \sqrt{\text{their } 0.297}$	or their (b)
		B1 for $z = 1.96$ used in an attempt at a CI, may for example miss \sqrt{n} A1 for both limits awrt 3sf. Allow lower limit of 4.265	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA037011 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

